Математика. Правила округления числовых значений
Замену числа ближайшим к нему натуральным числом или нулем называют округлением этого числа до целых.
Правила округления числовых значений
Числа округляют и до других разрядов - десятых, сотых, десятков, сотен и т. д.
Если число округляют до какого-нибудь разряда, то все следующие за этим разрядом цифры заменяют нулями, а если они стоят после запятой, то их отбрасывают.
Правило №1. Если первая из отбрасываемых цифр больше или равняется 5, то последняя из сохраняемых цифр усиливается, т. е. увеличивается на единицу.
Пример 1. Дано число 45,769, которое нужно округлить до десятых. Первая отбрасываемая цифра - 6 ˃ 5. Следовательно, последняя из сохраняемых цифр (7) усиливается, т. е. увеличивается на единицу. И, таким образом, округленное число будет - 45,8.
Пример 2. Дано число 5,165, которое нужно округлить до сотых. Первая отбрасываемая цифра – 5 = 5. Следовательно, последняя из сохраняемых цифр (6) усиливается, т. е. увеличивается на единицу. И, таким образом, округленное число будет - 5,17.
Правило №2. Если первая из отбрасываемых цифр меньше, чем 5, то усиление не делается.
Пример: Дано число 45,749, которое нужно округлить до десятых. Первая отбрасываемая цифра - 4< 5. Следовательно, последняя из сохраняемых цифр (7) не усиливается, т. е. округленное число будет - 45,7.
Правило №3. Если отбрасываемая цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее четное число. Т. е. последняя цифра остается неизменной, если она четная и усиливается, если - нечетная.
Пример 1: Округляя число 0,0465 до третьего десятичного знака, пишем - 0,046. Усиления не делаем, т. к. последняя сохраняемая цифра (6) - четная.
Пример 2. Округляя число 0,0415 до третьего десятичного знака, пишем - 0,042. Усиления делаем, т. к. последняя сохраняемая цифра (1) - нечетная.